
On Hierarchical Routing in Doubling Metrics

Anupam Gupta, Bruce M. Maggs, Shuheng Zhou

CMU-PDL-04-106

December 2004

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

We study the problem of routing in doubling metrics, and show how to perform hierarchical routing in such metrics with small stretch and compact
routing tables (i.e., with a small amount of routing information stored at each vertex). We say that a metric

�
X � d � has doubling dimension dim

�
X �

at most α if every set of diameter D can be covered by 2α sets of diameter D � 2. (A doubling metric is one whose doubling dimension dim
�
X � is a

constant.) For a connected graph G, whose shortest path distances dG induce the doubling metric
�
X � dG � , we show how to perform

�
1 � τ � -stretch

routing on G for any 0 � τ � 1 with routing tables of size at most
�
α � τ � O � α � log ∆ logδ bits with only

�
α � τ � O � α � log ∆ entries, where ∆ is the diameter

of G and δ is the maximum degree of G. Hence the number of routing table entries is just τ 	 O � 1 � log ∆ for doubling metrics. These results extend
and improve on those of Talwar (2004).

We thank the members and companies of the PDL Consortium (including EMC, Engenio, Hewlett-Packard, HGST, Hitachi, IBM, Intel,
Microsoft, Network Appliance, Oracle, Panasas, Seagate, Sun, and Veritas) for their interest, insights, feedback, and support. This material is
based on research sponsored in part by the Army Research Office, under agreement number DAAD19–02–1–0389. Bruce Maggs is supported
in part by NSF Award CNF–0435382, NSF Award CNF–0433540, NSF ITR Award ANI–0331653, NSF ITR Award CCR–0205523 and
US ARO Award DAAD19-02-1-0389.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
On Hierarchical Routing in Doubling Metrics

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer Science,Parallel Data
Laboratory,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: doubling metrics, bounded growth, hierarchical routing, decomposition

1 Introduction

The doubling dimension of a metric space � X � d � is the least value α such that each ball of radius R can be
covered by at most 2α balls of radius R � 2 [12]. For any α ��� , the space � α under any of the � p norms
has doubling dimension Θ � α � , and hence this doubling dimension extends the standard notion of geometric
dimension; moreover, it can be seen as a way to parameterize the inherent “complexity” of metrics.

In this paper, we study the problem of designing routing algorithms for networks whose structure is
parameterized by the doubling dimension dim � X �
	 α; we show that one can route along paths with stretch
� 1 � τ � with small routing tables—with only O ��� α � τ � O

�
α � log ∆ � entries, where ∆ is the diameter of the

network G. Each entry stores at most O � logδ � bits, where δ is the maximum degree of G, and hence
for doubling metrics—where α is a constant—and any τ 1, we have � 1 � τ � -stretch routing with only
O � log∆ logδ � bits of routing information at each node.

The idea of placing restrictions on the growth rate of networks to bound their “intrinsic complexity” is
by no means novel; it has been around for a long time (see, e.g., [16]), and has recently been used in several
contexts in the literature on object location in peer-to-peer networks [21, 15, 14]. While these papers used
definitions and restrictions that differ slightly from each other, we note that our results hold in those models
as well. Our results extend those of Talwar [23], whose routing schemes for metrics with dim � X ��	 α require
local routing information of � O � logα ∆ � bits. Formally, we have the following main result.

THEOREM 1.1. Given any network G, whose shortest path distances dG induce the doubling metric � X � dG �
with dim � X ��	 α, and any τ � 0, there is a routing scheme on G that achieves � 1 � τ � -stretch and where
each node stores only � α

τ � O
�
α � log∆ logδ bits of routing information, where ∆ is the diameter of G and δ is

the maximum degree of G.

The proof of the theorem proceeds along familiar lines; we construct a set of hierarchical decomposi-
tions (HDs) of the metric � X � d � , where each HD consists of a set of successively finer partitions of X with
geometrically decreasing diameters. Each node in X maintains a table containing next hops to a small subset
of clusters in these partitions; to route a packet from s to t, we use the routing table for s to pick some “small
cluster” C in s’ table that contains t and send the packet to some node x in C; a similar process repeats at
node x � C until the packet reaches t. The idea is to create routing tables which ensure that the distance from
x to t is much smaller than that from s to t, and hence the detour taken in going from s to t is only τd � s � t � .
(Details of routing schemes appear in Section 4 and 5.)

While this framework is well-known, the standard ways to construct HDs are top-down methods
which iteratively refine partitions. These methods create long-range dependencies which require us to build
O � logn � HDs in general; in order to use the locality of the doubling metrics and get away with Õ � α � HDs,
we develop a bottom-up approach that avoids these dependencies when building HDs. The analysis of this
process uses the Lovász Local Lemma (much as in [17, 12]); details are given in Section 3.

1.1 Related Work Distributed packet routing protocols have been widely studied in the theoretical
computer science community; see, e.g., [8, 9, 2, 19, 6, 20], or the survey by Gavoille [10] on some of the
issues and techniques. Note that these results, however, are usually for general networks, or for networks
with some topological structure. By placing restrictions on the doubling dimension, we are able to give
results which degrade gracefully as the “complexity” of the metric increases. For example, it is known that
any universal routing algorithm with stretch less than 3 requires some node to store at least Ω � n � routing
information [11]; however, these graphs generate metrics with large dim � X � . Our results thus allow one to
circumvent these lower bounds for metrics of “lower dimension”.

Packet routing in low dimensional networks has been previously studied in Talwar [23], that gives
algorithms that require O � α � 6

τα � α � logα � 2 ∆ ��� bits of information to be stored per node in order to achieve
� 1 � τ � -stretch routing—for constant stretch τ and doubling dimension α. The resulting dependence of
O � log2 � α ∆ � should be contrasted with the dependence of O � log ∆ logδ � bits of information in our schemes.

1

We should point out that his algorithms are based on graph decomposition ideas with a top-down approach
and do not require the LLL to construct routing tables.

One of the papers that influence this work is that of Kleinrock and Kamoun [16]. They describe a
general hierarchical clustering model on which our routing schemes are based. They show that routing
schemes based on a hierarchical clustering model do not cause much increase in the average path length
for networks that satisfy the following two assumptions: (a) the diameter of any cluster S chosen is bounded
above by O ��� S � ν � for some constant ν ��� 0 � 1 � , and (b) the average distance between nodes in the network
is Θ � nν � . In contrast, we give bounds on the path stretch on a per node-pair level using slightly different
assumptions on the network geometry.

Other papers on object location in peer-to-peer networks [21, 15, 14] have also used restrictions similar
to [16] on the growth rate of metrics; in particular, they consider metrics where increasing the radius of
any ball by a factor of 2 causes the number of points in it to increase by at most some constant factor 2β.
(Plaxton et al. [21] also consider the lower bound on the growth.) Here the parameter β can be considered to
be another notion of “dimension” for a metric space. It can be shown that dim � X � 4β [12, Prop. 1.2]; hence
our results hold for such metrics as well. Our scheme is also similar in spirit to a data-tracking scheme of
Rajaraman et al. [22], who use approximations by tree distributions to obtain bounds on the stretch incurred.

2 Definitions and Notation

Let the input metric be � X � d � ; this paper deals with finite metrics with at least 2 points. We use standard
terminology from the theory of metric spaces; many definitions can be found in [7] and [13]. Given x � X
and r � 0, we let B � x � r � denote � x � � X � d � x � x � � r � , i.e., the ball of radius r around x. Given a subset
S 	 X , the distance of x � X to the set S is d � x � S � 	 min � d � x � x � �
� x � � S � .

The doubling constant λX of a metric space � X � d � is the smallest value λ such that every ball in X can
be covered by λ balls of half the radius. The doubling dimension of X is then defined as dim � X �
	 log2 λX ;
we use the letter α to denote dim � X � . A metric is called doubling when its doubling dimension is a constant.
A subset Y 	 X is an r-net of X if (1) for every x � y � Y � d � x � y ��� r and (2) X 	� y � Y B � y � r � . Such nets
always exist for any r � 0, and can be found using a greedy algorithm.

PROPOSITION 2.1. (SEE, E.G.,[12]) If all pairwise distances in a set Y 	 X are at least r (e.g., when Y is

an r-net of X), then for any point x � X and radius t, we have that �B � x � t ��� Y � λ � log2
2t
r �

X .

A cluster C in the metric � X � d � is just a subset of points of the set X . The diameter of the cluster C
is the largest distance between points of the cluster. Each cluster is associated with a center x � X (which
may not lie in C) and the radius of the cluster C is the smallest value r such that the cluster C is contained in
B � x � r � .

DEFINITION 2.1. Given r � 0, an r-ball partition Π of � X � d � is a partition of X into clusters C1 � C2 ������� ,
with each cluster Ci having a radius at most r.

By scaling, let us assume that the smallest inter-point distance in X is exactly 1. Let ∆ denote the
diameter of the metric � X � d � , and hence ∆ is also the aspect ratio of the metric. Define ρ 	 256α � 1 and

h 	�� logρ ∆ � . Let us define ηi 	 1 � ρ � ρ2 ������� � ρi � ρi � 1 � � ρ � 1 � ; note that ηi 	 ρηi � 1 � 1. Let us fix a

ρi � 2-net and denote with Ni for the metric � X � d � , for every 0 i h � 1.

2.1 Hierarchical Decompositions (HDs) We now give a formal definition of a hierarchical decomposi-
tion (HD) which is used throughout this paper and is the basic object of our study. As noted below, such a
decomposition can be naturally associated with a decomposition tree that is used for our hierarchical routing
schemes.

2

DEFINITION 2.2. A ρ-hierarchical decomposition ΠΠΠ (ρ-HD) of the metric � X � d � is a sequence of partitions

Π0 ������� � Πh with h 	�� logρ ∆ � such that:

1. The partition Πh has one cluster X, the entire set.

2. (geometrically decreasing diameters) The partition Πi is an ηi-ball partition. Since inter-point
distances are at least 1, it implies that Π0 	 � � x � : x � X � ; in other words, each cluster in Π0 is a
singleton vertex.

3. (hierarchical) Πi is a refinement of Πi � 1 and each cluster in Πi is contained within some cluster of
Πi � 1.

Given such a ρ-HD ΠΠΠ 	 � Πi � hi � 0, the partition Πi is called the level-i partition of ΠΠΠ and clusters in Πi are the
level-i clusters. Note that these clusters have a radius ηi and hence diameter 2ηi. Furthermore, define the
degree deg � ΠΠΠ � to be the maximum number of level-i clusters contained in any level- � i � 1 � cluster in Π i � 1,
for all 0 i h � 1.

2.1.1 Hierarchical Decompositions and HSTs A hierarchical decomposition is a laminar family of sets,
where given any two sets, they are either disjoint or one contains the other. It is well known that such a
family F of sets over X can be associated with a natural decomposition tree whose vertices are sets in F
and whose leaves are all the smallest sets in the family (which are elements of X , in this case). We can use
this to associate a so-called hierarchically well-separated tree (also called an HST [3]) TΠΠΠ with a hierarchical
decomposition ΠΠΠ; since each edge in TΠΠΠ connects some C � Πi and C � � Πi � 1 with C � 	 C, we associate a
length ηi with edge � C � C � � . Given such a tree TΠΠΠ, we can (and indeed do) talk about its level-i clusters with
no ambiguity; these are the same level-i clusters in the associated Πi. Note that the degree of vertices in this
tree TΠΠΠ is bounded by deg � ΠΠΠ � � 1.

2.2 Padded Probabilistic Ball-Partitions Recall that an r-ball partition Π of � X � d � is a partition of X
into a set of clusters C 	 X , each contained in a ball B � v � r � for some v � X . B � x � t � is cut in the partition Π
if there is no cluster C � Π such that B � x � t �
	 C. In general, B � x � t � is cut by a set S 	 X if both S � B � x � t �
and B � x � t � �

S are non-empty.
Let P be a collection of all possible partitions of X , and hence Π � P . Given a partition Π � P and

x � X , let CΠ � x � be the cluster of Π containing x.

DEFINITION 2.3. ([12]) An � r� ε � -padded probabilistic ball-partition of a metric � X � d � is a probability
distribution µ over P satisfying:

1. (bounded radius) Each Π in the support of µ is an r-ball partition.

2. (padding) � x � X, Prµ � d � x � X �
CΠ � x ��� � εr � � 1

2 .

(This is called a padded probabilistic decomposition in [12].) Each cluster C in every partition Π in the
support of a probabilistic ball-partition µ has radius at most r; and for any x � X , a random r-ball partition
Π drawn from the distribution µ does not cut B � x � εr � (and hence B � x � εr � is contained in cluster CΠ � x � � Π)
with probability � 1 � 2.

3 Padded Probabilistic Hierarchical Decompositions

In this section, we define a � ρ � ε � -padded probabilistic hierarchical decomposition (PPHD) of the metric
� X � d � , on which the routing algorithm is based. A PPHD is a probability distribution over HDs that has a
“probabilistic padding” property similar to that in Definition 2.3. For any pair of nodes s, t in X and any
ball containing both s and t with a diameter of � d � s � t � , the PPHD ensures that this ball is contained in a
single cluster of radius only slightly (� α factor) larger than d � s � t � at a suitable level with probability � 1

2 .

3

Thus the shortest s-t path is contained entirely in this cluster of radius not much more than d � s � t � . This is
the general intuition for PPHDs and the starting point for the routing algorithm.

For our applications, we refine PPHDs so that they consist of only m 	 O � α logα � of HDs. We first
give an existence proof, using the Lovász Local Lemma (LLL), to show that such decompositions exist in
Section 3.1. We then outline a randomized polynomial-time algorithm to find the decompositions using
Beck’s techniques [4] in Section 3.2.

The existence proof for the PPHDs has the following outline. We first give a randomized algorithm
to form a single random hierarchical decomposition ΠΠΠ, which proves the existence of PPHDs, albeit with
support over an exponential number of HDs. To reduce the size to something that depends only on α, we
have to use the locality property of the metric space and the LLL. One significant complication in the proof
is that we cannot use the standard top-down decomposition schemes to construct PPHDs, since they have
long-range correlations that preclude the application of the LLL. Our solution to this problem is to build the
decomposition trees in a bottom-up fashion and to make sure that the coarser partitions respect the cluster
boundaries made in the finer partitions.

3.1 Existence of PPHDs Motivated by the routing application, we are interested in finding the following
structure, which we call a � ρ � ε � -padded probabilistic hierarchical decomposition. This is a probability
distribution µ over ρ-hierarchical decompositions (as defined in Definition 2.2) so that given B � x � εr � with
r � ρi, if we choose a random ρ-HD ΠΠΠ from µ and examine the partition Πi in it, B � x � r � is cut in this
partition Πi with probability at most 1

2 .

DEFINITION 3.1. (PPHD) A � ρ � ε � -padded probabilistic hierarchical decomposition (referred to as a
� ρ � ε � -PPHD) is a distribution µ over ρ-hierarchical decompositions, such that for any point x � X and
any value r s.t. ρi � 1 r ρi,

PrΠΠΠ � µ �B � x � εr � is cut in Πi � 1
2 �

where the random ρ-hierarchical decomposition chosen is ΠΠΠ 	 � Πi � hi � 0. The degree of the PPHD µ is defined
to be deg � µ � 	 maxΠΠΠ � µ deg � ΠΠΠ � .

Note that the definition of a PPHD extends both the idea of a padded probabilistic ball-partition and
that of HDs—we ask for a distribution over entire HDs, instead of over ball-partitions at a certain scale r.
However, having picked a random ρ-HD ΠΠΠ 	 � Πi � hi � 0 from this distribution, we demand that balls of radius
� ερi be cut with small probability only in partition Πi that is “at the correct distance scale”. Our main
theorem of this section is the following:

THEOREM 3.1. Given a metric � X � d � , there exists a � ρ � ε � -PPHD µ for � X � d � with ρ 	 O � α � and ε 	
O � 1 � α � . The degree deg � µ � of the PPHD is at most αO

�
α � . Furthermore, there exists a distribution µm

whose support is over only m 	 O � α log α � HDs.

Since any hierarchical decomposition ΠΠΠ can be associated with a tree TΠΠΠ (as mentioned in Section 2.1),
the above theorem can be viewed as guaranteeing a set of m trees such that the level-i clusters in half of
these trees do not cut a given ball of radius � ερi. This proves the existence of an appropriate tree cover.

DEFINITION 3.2. A stretch-k Steiner tree cover for � X � d � is a set of trees T 	� T1 ������� � Tm � (with each tree
Ti possibly containing Steiner points �� X, and edges having lengths), where for every x � x � � X, there exists a
tree Ti � T for � X � d � such that the (unique shortest) path in Ti between x and x � has length at most k d � x � x � � .
LEMMA 3.1. Given a metric � X � d � with dim � X � 	 α, there exists a stretch-O � ρ � ε � Steiner tree cover
consisting of O � α log α � trees, where each tree has degree at most αO

�
α � .

4

We omit the simple proof of the above lemma and the description of how the Steiner points can be removed
from the trees without altering distances and degrees. We prove Theorem 3.1 in the rest of this section. We
first prove (in Section 3.1.1) that one can obtain the result where the PPHD µ has support over many HDs.
We then use the Lovász Local Lemma (in Section 3.1.2) to show that a PPHD distribution µm with support
over only a small number of HDs exists.

3.1.1 Padded Probabilistic Hierarchical Partitions If we do not care about the number of HDs in the
support of a PPHD, the existence result of Theorem 3.1 has been proved earlier [23] with better guarantees;
the proof basically follows from the padded decompositions given in [12]. However, we now give another
proof that introduces ideas that are ultimately useful in obtaining a PPHD distribution whose support is over
a small number of HDs.

THEOREM 3.2. Given a metric � X � d � , there exists a � ρ � ε � -PPHD µ for � X � d � with ρ 	 O � α � and ε 	
O � 1 � α � , and with degree deg � µ � 	 αO

�
α � . Furthermore, one can sample from µ in polynomial time.

Proof. We define a randomized process that builds a random hierarchical decomposition tree in a bottom-up
fashion, instead of the usual top-down way. To build a HD ΠΠΠ, we start with � Π0 	 � � x � : x � X � � and
perform an inductive step. At any step, we are given a partial structure � Π i ������� � Π0 � where for each j i,
the clusters in Π j � 1 (which is an η j � 1-ball partition) are contained within the clusters of Π j. We then build
a new partition Πi � 1, with all clusters of Πi being contained within clusters of Πi � 1. We have to ensure that
clusters of Πi � 1 are contained in balls of radius at most ηi � 1 and that any ball of radius εr for ρi r ρi � 1

is cut in Πi � 1 with probability at most 1
2 . This way, we end up with a valid random HD ΠΠΠ. The claimed

probability distribution µ is the one naturally generated by this algorithm. To create the clusters of Π i � 1, we
use a decomposition procedure whose property is summarized in the following lemma.

0. Let Y � X , p � cαΓ
Λ for constant c to be fixed later, N be a Λ � 2-net of X .

1. Pick an arbitrary “root” vertex v � N not picked before
2. Set the initial value of the “radius” L � Λ � 2
3. Flip a coin with bias p
4. If the coin comes up heads, goto Step 11
5. If the coin comes up tails, increment L by Γ
6. If L � Λ � 1 � 1 � 4α �
7. choose a value L̂ from � 0 � Λ � � 4α � � u.a.r.
8. round down L̂ to the nearest multiple of Γ
9. set L � Λ � 1 � 1 � 4α � � L̂
10. Else goto Step 3
11. Form a new cluster C � in Π � � containing all clusters in Π � � Y with centers lie in B � v� L �
12. Remove the vertices in C � from Y
13. (Remark: C � has radius at most Λ � Γ)
14. If Y �	 /0 goto Step 1
15. End

Figure 3.1: Algorithm CUT-CLUSTERS

LEMMA 3.2. Given a metric � X � d � with a Γ-ball partition Π � of X into clusters lying in balls of radius at
most Γ � 1, and a value Λ � 8Γ, there is a randomized algorithm to create a � Λ � Γ � -ball partition Π � � of
X, where each cluster of Π � is contained in some cluster of Π � � , and for any x � X and radius 0 r Λ,

Pr �B � x � r � is cut in Π � � � O � r � Γ �
Λ

α �
5

Proof. Note that we can assume that Γ � Λ � cα and Λ � α, since otherwise the lemma is trivially true. Using
the algorithmCUT-CLUSTERS given in Figure 3.1, we create a partition of Y (and hence of X); all distances
are measured according to the original distance function d in X .

Let us define Bx 	 B � x � r � . Note that if Bx is cut in Π � � due to some value of L from v � N (for the
first time), then L falls into the interval � d � v� x � � r � Γ � d � v� x � � r � Γ � . Indeed, if Bx is cut in Π � � , there
are at least two clusters C �1 � C �2 � Π � such that they both cut Bx, and B � v� L � contains one of their centers
but not both. Since both clusters intersect Bx, their centers c �1 and c �2 are at distance at most r � Γ from x.
If L � d � v� x � � r � Γ, the triangle inequality implies that B � v� L � cannot contain either center. Similarly, if
L � d � v� x � � r � Γ, B � v� L � contains both of them. Hence the value of L must fall into the interval indicated
above.

If a cut in Step 11-12 is made due to the appearance of a heads in Step 4, we call such a cut a normal
cut; else we call it a forced cut. We now bound the probability that the ball Bx 	 B � x � r � is cut due to either
type.
Normal cuts. Consider the first instant in time when the parameter L for some root v � N reaches a value
such that the cut obtained by taking all Π � � Y clusters with centers in B � v� L � would cut Bx. (If there is no
such time, then Bx is never cut by a normal cut.) In this case, L must also be in the range d � v� x ��� � r � Γ � ,
and increases with time. Now either (i) we make a normal cut before L goes outside this range; or (ii) we
make a forced cut; or (iii) L goes outside the range and we make no cut in this range. In any case, the
fate of Bx is decided; Bx is either cut or contained in a new cluster with center v. We now upper-bound the
probability that event (i) happens. There are at most 2 � r � Γ ��� Γ coin flips made (with bias p) when the value
of L is in the correct range of width at most 2 � r � Γ � and one of these flips must come up heads for the cut
to be made. The trivial union bound now shows this probability to be at most 2

�
r � Γ �
Γ p 	 2c

�
r � Γ �
Λ α.

Forced cuts. Let us look at some root v � N and bound the probability that a forced cut is made with cutting
radius L from v in some range Rx 	 d � v� x ��� � r � Γ � . Since the cut is forced and the value of L is greater than
Λ � 1 � 1 � 4α � � 3Λ � 4, we must have flipped a sequence of at least Λ � 4Γ successive tails; the probability of
this event is at most

� 1 � p �
�
Λ � 4Γ � e � pΛ � 4Γ 	 e � c

4 α � (3.1)
Now, we choose L̂ to be a multiple of Γ uniformly in a range of width at most Λ � 4α, and hence the

probability that L falls into a range of length 2 � r � Γ � is at most 2 � r � Γ ��� � Λ � 4α � . Multiplying this by (3.1),
we obtain a bound of e � c

4 α � 8
�
r � Γ �
Λ α on the probability that a forced cut is made around v with L in the

range Rx such that the cluster C � with center v in Π � � may cut Bx. Finally, for any x � X , Bx can only be cut
by clusters from roots v � N that are at distance at most � r � Γ � � Λ 3Λ from x; by Prop. 2.1, there are at
most �B � x � 3Λ � � N � 	 � 6Λ

Λ � 2 � α � 12 � α of such roots. Now we choose c to be large enough; the probability

of Bx being cut by a forced due to any such root is at most 12α � e � c
4 α � 8

�
r � Γ �
Λ α O

�
r � Γ �
Λ α by the union

bound.

We now use the above lemma to prove Theorem 3.2. Using Π � 	 Πi, Γ 	 ηi
� ρi � ρ � � ρ � 1 ��� , and

Λ 	 ηi � 1 � Γ 	 ρi � 1, and using N 	 Ni � 1 (which is a ρi � 1 � 2 	 Λ � 2 net), we create a � Γ � Λ 	 ηi � 1 � -
ball partition such that for all x and all r ρi � 1 and ε 	 O � 1 � α � , we have

Pr �B � x � εr � cut � O
�
εr � Γ �
Λ α O

�
ρi �

ρi � 1 α 1
10
� 1

2 � (3.2)

for ρ � α and c being large enough constants. The probability distribution µ over all decompositions ΠΠΠ thus
generated satisfy the requirements of a PPHD as given in Definition 3.1. Finally, we bound the degree
deg � µ � of the PPHD µ; note that each level-i cluster is centered at some v � Ni, hence the number of level-i
clusters contained in some level- � i � 1 � cluster is � 2ηi � 1 � � ρi � 2 ��� O

�
α � 	 αO

�
α � by Prop. 2.1.

Few Hierarchical Decompositions. The above proof immediately gives us a PPHD µM with a support
on only M 	 O � logn � log log∆ � HDs. By sampling from the distribution µ for M times, we get the

6

HDs ΠΠΠ
�
1 � ������� � ΠΠΠ �

M � , and let the PPHD µM be the uniform distribution on these HDs. By (3.2), for each

j � � 1 ����� M � , point x � X and radius r ρi, B � x � εr � is not cut in the partition Π
�
j �

i with probability 1 � 10;
hence a Chernoff bound implies that this ball is cut in the level-i partitions of more than M � 2 of the HDs
with probability less than 1 � � n log ∆ � O

�
1 � . Now taking the trivial union bound over all possible values of the

center x � X , and all the log ∆ values of r which are powers of 2 shows that the µM is a � ρ � ε � 2 � -PPHD whp.

3.1.2 Even Fewer Hierarchical Decompositions While the proof of Theorem 3.2 and the discussion
above do not produce a PPHD with small support (of size O � α log α �), we have seen all the essential ideas
required to prove the existence of such a distribution µm and hence to complete the proof of Theorem 3.1.
To prove this result, we use the locality of the construction, in conjunction with the Lovász Local Lemma
(LLL). This locality property is the very reason why we built the hierarchical decomposition bottom-up; it
ensures that if any particular ball is not cut at some low level i (the “local decisions”), it is not cut at levels
higher than i (i.e., the “non-local decisions”). Also, we choose the decomposition procedure of Theorem 3.2
in preference to others (e.g., those in [12] and [23]) since they choose a single random radius for all clusters
in one particular partition Π of X , which causes correlations across the entire metric space. (The LLL has
been used in similar contexts in [12, 17].)
Proof of Theorem 3.1: To show that there is a distribution µm over only m 	 O � α log α � trees, we use an
idea similar to that in the previous section, augmented with some ideas from [12]. Instead of building
one hierarchical decomposition ΠΠΠ bottom-up, we build m hierarchical decompositions ΠΠΠ

�
1 � ������� � ΠΠΠ �

m �

simultaneously (also from the bottom up).
As before, the proof proceeds inductively; we assume that we are given level-i partitions Π

�
1 �

i ������� � Π �
m �

i ,

where Π
�
j �

i is the level-i partition belonging to ΠΠΠ
�
j � . We then show that we can build level- � i � 1 � partitions

Π
�
1 �

i � 1 ������� � Π �
m �

i � 1 where each Π
�
j �

i is a refinement of the corresponding Π
�
j �

i � 1, and any given ball B � x � εr � with
ρi r ρi � 1 is cut in at most m � 2 of these level- � i � 1 � partitions. We start off this process with each

Π
�
j �

0 	� � x � : x � X � being the partition consisting of all singleton points in X . Let J 	� 1 ������� � m � . Given m

level-i partitions � Π
�
j �

i � j � J , we create m level- � i � 1 � partitions � Π
�
j �

i � 1 � j � J using the procedure in Lemma 3.2
independently on each of the m decompositions; parameters are set as in the proof of Theorem 3.2, with
Λ 	 ρi � 1, Γ 	 ηi, and ε 	 1 � O � α � . This extends the m hierarchical decompositions to the � i � 1 � st level; it
remains to show that the probability of balls being cut is small.

To describe the events of interest, let us take β 	 ερi � 1 and define Z to be a β-net of X . For each z � Z,

define Bz to be B � z � 2β � , and E i � 1
z to be event that Bz is cut in more than m � 2 of the partitions � Π

�
j �

i � 1 � mj � 1,
which we refer to as a “bad” event (used in Section 3.2). We prove the claim using the Lovász Local Lemma.

CLAIM 3.3. Given any � Π
�
j �

i � mj � 1, Pr ��� z � Z E i � 1
z � � 0.

LEMMA 3.3. (Lovász Local Lemma) Given a set of events � E i � 1
z � z � Z , suppose that each event is mutually

independent of all but at most B other events. Further suppose that, for each event E i � 1
z , Pr �E i � 1

z � p. Then

if ep � B � 1 � � 1, Pr ��� z � Z E i � 1
z � � 0.

Proof of Claim 3.3: First, let us calculate the probability of E i � 1
z : by changing the constant in ε, we can

make the probability that a ball Bz is cut in one level- � i � 1 � partition to be at most 1 � 8. Let us denote by

A j
z the event that Bz is cut in partition Π

�
j �

i � 1. The expected number of partitions in which the ball is cut is
at most m � 8. Since the partitions are constructed independently, the probability for the event E i � 1

z that Bz

is cut in m � 2 partitions (which is at least four times the expectation) is at most exp � � 9m � 40 � ; this can be
established using a standard Chernoff bound. This, in turn, is at most � 0 � 8 � m, which we define to be p.

Next we show that an event E i � 1
z is mutually independent of all events E i � 1

z � such that d � z � z � � � 4ηi � 1.

For each partition Π
�
j �

i � 1, each root v � Ni � 1 determines its radius by conducting a random experiment

7

independent of any other roots’ experiments. These random experiments, and only these, determine whether
events such as A j

z occur. In turn, whether event E i � 1
z occurs is determined only by events A1

z ������� � Am
z . For

a particular j, for each z, all of the cuts that could affect Bz in the algorithm CUT-CLUSTERS are made
from roots v � Ni � 1 at distance at most 2β � Γ � Λ 	 2β � ηi � 1

� 2ηi � 1 from z. Whether event A j
z occurs

is determined by the experiments corresponding to these roots alone. If d � z � z � � � 4ηi � 1, then there is
no intersection between the experiments for z and the experiments for z � . Since E i � 1

z is determined by
A1

z ������� � Am
z , E i � 1

z is mutually independent of the set of all E i � 1
z � such that d � z � z � � � 4ηi � 1.

We apply the LLL now. Note that the number of z � � Z within distance 4ηi � 1 of E i � 1
z for z � Z is

at most �B � z � 4ηi � 1 � � Z � �� 8ηi � 1
β � α O � α � α � We define this quantity to be B; ep � B � 1 � is at most 1 for

m 	 O � α logα � and Claim 3.3 follows.
Having proved the claim, let us now show that with nonzero probability, each B � x � r � for x � X and

ρi r ρi � 1 is not cut in at least m � 2 of the level- � i � 1 � partitions � Π
�
j �

i � 1 � j � J . Let us call this event SCi � 1.
The claim shows that with nonzero probability, each ball Bz with z � Z is not cut in at least m � 2 of the

partitions � Π
�
j �

i � 1 � j � J . Since each x � X is at distance at most β to some zx � Z, the triangle inequality implies
that B � x � εr � 	 B � x � β � is not cut if B � zx � 2β � is not cut, which holds in at least half of the partitions. Hence
SCi � 1 also holds with nonzero probability.

Finally, we prove that we can choose a random set of HD’s � ΠΠΠ
�
j � � j � J such that SCi � 1 occurs for each

1 i � 1 h simultaneously with nonzero probability. The key to the proof is that we have assumed an

arbitrary (worst-case) set of partitions � Π
�
j �

i � mj � 1 at level i in proving a nonzero lower bound on Pr � SCi � 1 � .
Hence, we can ignore any dependence among the events SCi � 1 for 1 i � 1 h, and simply multiply
their nonzero probabilities together to obtain a nonzero lower bound on the probability that they all occur
simultaneously.

3.2 An Algorithm for Finding the Decompositions The above procedure can be made algorithmic using
an approach based on Beck’s algorithmic version of the LLL (see, e.g., [1, 4]). The decomposition satisfies
all properties of the one that is shown to exist using LLL in Theorem 3.1, although with some changes in
constant parameter values. As in the proof of Theorem 3.1, we build m 	 O � α log α � HDs level by level in
a bottom-up fashion.

On any particular level i � 1, we begin by choosing m partitions at random. After making the random
choices, we examine the partitions and identify all of the bad events that have occurred. We then group
together bad events that may depend on each other, as well as “good” events that may depend on the bad
events. Each group forms a connected component in the LLL dependency graph. We show that, with high
probability, all connected components have size O � logν � , where ν 	 � Z � is the size of the ερ i � 1-net of X .

Once the groups have been identified, we need to eliminate the bad events. Hence, for each group,
we “undo” all of the random choices concerning that group, while not modifying any choices that do not
affect the group. New choices must be made for each group so that no bad event occurs. Because the group
size is small (the number of centers v � Ni � 1 concerning the group that we choose random radius for is also
O � logν �), we can find new settings for these choices using exhaustive search in polynomial time.

One interesting complication in this proof is that the set of clusters containing a group have different
shapes in the m different partitions. In each partition, we cut out a “hole”, and redo the choices within the
hole. The boundary of the hole is formed from the boundaries of the clusters that may influence the bad
events (and the good events) in the group. In forming the boundary, additional good events may be added
to the hole. As a consequence, it is possible that a good event inside a hole in one partition may appear
inside a different hole in another partition. Hence, when we perform exhaustive search, these holes must
be considered together. However, our method of bounding the size of each connected component already
takes into account any merging of holes on account of shared good events, so that we never have to redo the
choices for a group of size more than O � log ν � .

8

Another issue is that the subset of centers in a hole that belong to Ni � 1, the ρi � 1 � 2-net that covers the
entire metric, may not by themselves cover the hole. (Portions of the hole may be covered by centers outside
the hole.) So for each of the m partitions, we may have to add additional net points inside the hole to obtain
a complete cover for it. We show that the size of net points in the hole increases by only a constant factor
and remains O � logν � , and the degree of the hierarchical decomposition trees is at most αO

�
α � as before.

4 The � 1 � τ � -Stretch Routing Schemes

Given a � ρ � ε � -PPHD µm with a support on m HDs, we can now define, for every 0 � τ 1, a � 1 � τ � -stretch
routing scheme which uses routing tables of size at most m � α � τ � O

�
α � log∆ logδ bits at every node.

We consider routing schemes in two models. In a basic model, we assume that there is no underlying
routing fabric and each node can only send packets to its direct neighbors. In a second model, we can build
an overlay hierarchical routing scheme upon an underlying routing fabric like IP that can send packets to
any specific node in the network. We specify the routing algorithm in the basic model, but also indicate how
one can circumvent certain steps of this algorithm when an underlying routing mechanism is given.

Let us recall some of the notation defined earlier. Let � ΠΠΠ
�
j � � mj � 1 be the m hierarchical decompositions

on which µm has positive support, and the level-i partition corresponding to ΠΠΠ
�
j � be called Π

�
j �

i . Recall that
we can associate each hierarchical decomposition ΠΠΠ

�
j � with a tree Tj (as outlined in Section 2.1). Note that

each of these trees has a deg � µm � bounded by αO
�
α � and a height of at most h 	 � logρ ∆ � . Recall that each

internal vertex of the tree Tj at level i corresponds to a cluster of Π
�
j �

i and leaves of Tj � � j � J, correspond to
vertices in X , where J 	 � 1 ������� � m � . Let each internal vertex v of each tree T j label its children by numbers
between 1 and deg � µm � ; v does not label anything with the number 0, but uses it to refer to its parent. Note
that this allows us to represent any path in a tree T j by a sequence of at most 2h 	 O � logρ ∆ � labels.

Lemma 3.1 already shows that the m trees thus created form a small O � ρ � ε ��	 O � α2 � -stretch Steiner
tree cover, which can be used for routing purposes (as in Section 4.3). However, since such a large stretch is
not always acceptable, we improve on this scheme in the following subsections to get better routing bounds.

4.1 The Addressing Scheme Given a tree T j and a vertex x � X , we assign x a local address addr j � x � ,
which consists of h 	 � logρ ∆ � blocks, one for each level of the tree T j. Each block has a fixed length.

The ith block of the addr j � x � corresponds to partition Π
�
j �

i and contains the label assigned to the cluster Cx

containing x in Π
�
j �

i by Cx’s parent in Tj. Since any such label is just a number between 1 and deg � µm � ,
where deg � µm � 	 αO

�
α � , we need O � α log α � bits per block. In fact, one can extend this addressing scheme

to any cluster C in Tj. If C is a level-i cluster, the kth-block of addr j � C � contains � ’s for k � i; addr j � X � for
the root cluster of Tj contains all � ’s matching all vertices in X .

The global address addr � x � of point x � X is the concatenation
�
addr1 � x � ������� � addrm � x ��� of its local

addresses addr j � x � for j � J. Since each cluster C belongs to only one tree T j, we define addr j � � C � to be a
sequence of #’s of the correct length (where # are dummy symbols matching nothing), and hence define a
global address of C as well. (This is only for simplicity; in actual implementations, cluster addresses for T j

can be given by the tuple
�
addr j � C � � j � .)

Since there are O � α log α � bits per block, h blocks per local address, and m local addresses per
global address, substitution of the appropriate values gives the address length A to be at most m � h �
�
log � deg � µm ����� 	 O � α log α � � � logρ ∆ � � O � α logα �
	 O � α2 logα log ∆ � bits.

4.2 The Routing Table For each point x � X , we maintain a routing table Routex that contains the
following information for each T j, 1 j m:

1. For each ancestor of x in Tj that corresponds to a cluster C containing x, we maintain a table entry for

9

C.

2. Moreover, for each such C, we maintain an entry for each descendant of C in T j reachable within �
hops in tree Tj. Here � 	 Θ � logρ 1 � ετ � , with the constants chosen such that ηi ��� ετ

4 ρi � 1.

In the routing table Routex for x, each of the above entries thus corresponds to some level-i � cluster C � in Tj.
Let closex � C � � be the closest point in C � to x. (We assume, w.l.o.g., that ties are broken in some consistent
way, so that any node y on a shortest path from x to closex � C � � has the value closey � C � ��	 closex � C � � ; in
fact, this consistency is the only property we use.) For this C � , Routex stores (a) the global address addr � C � �
by which the table is indexed, (b) the identity of a “next hop” neighbor y of x that stays on a shortest path
from x to the closest point closex � C � � in C � , and (c) an extra bit

������� 	�
�����
x � C � � : if the cluster � levels above

C � in Tj is the cluster C, then
������� 	�
�����

x � C � � is set to be ������� if B � x � ερi � ��� � is entirely contained within
cluster C and d � x � closex � C � ��� ερi � ��� , and is set to be ��������� otherwise. Of course, if we reach the root of
Tj while trying to go up � levels, then the bit is set to be ������� . Note that if there is an underlying routing
fabric like IP, we can store the IP-address of some node in C � (say, the closest one) instead of (b) and (c)
above.

LEMMA 4.1. The number of entries in the routing table Routex of any x � X is at most log∆ � � α � τ � O
�
α � .

Proof. Let us estimate the number of entries in Routex for any x � X . There are m trees. For each tree T j,

for all j � J, there are h 	�� logρ ∆ � ancestors of x and the degree of the tree is bounded by deg � µm � 	 αO
�
α � .

Recall that ρ and 1 � ε are both O � α � , and hence � 	 O � log � α � τ ��� . Plugging these values in, we get that the
number of entries for x across m trees is at most m � h � � deg � µm ��� � 	 O � α log α � � O � logα ∆ � � αO

�
α � � 	

log∆ � � α � τ � O
�
α � . Each entry is indexed by one global address (of at most A 	 O � α2 log α log∆ � bits, which

we do not store in Routex since we can deduce it from addr � x � based on the clustering structure); each
entry indeed contains the identity of the next hop (which uses O � logδ � bits, where δ is the maximum degree
of G), a path length field (to be specified in Section 5.1), and one additional

������� 	�
�����
bit.

The forwarding algorithm makes use of two functions, NextHopx and PrefMatchx. For a point x and a level-
i � cluster C � in Tj, the function NextHopx � addr � C � ��� returns the next hop on the path from x to closex � C � �
provided that the next hop does not leave the cluster C at level i � � � that contains C � , and null otherwise. (As
we shall see, the packet forwarding algorithm is guaranteed never to encounter a null next hop.) Given points
x and t in X , the function PrefMatchx � t � returns an addr � C � � in Routex such that in some Tj, t belongs to
the level-i cluster C � , ������� 	�
����� x � C � � is ������� , and the value i is the smallest across all trees. Note that both
of these functions can be computed efficiently by node x. Furthermore, it is possible to support the functions
with data structures of size comparable to that of Routex.

Note that once the points in X have been assigned addresses (for which we have described only an
off-line algorithm), the routing tables can be built up in a completely distributed fashion. In particular, a
distributed breadth-first-search algorithm can be applied to determine whether a ball of a certain radius is
cut in a particular decomposition, and a distributed implementation of the Bellman-Ford algorithm can be
used to establish the next-hop entries for destinations for which the shortest paths lie within a certain cluster.

4.3 The Forwarding Algorithm The idea behind the forwarding algorithm is to start a packet off from
its origin s towards an intermediate cluster C containing its destination t; the packet header thus consists of
two pieces of information

�
addr � t � � addr � C ��� , where t is the destination node for the packet and C is the

intermediate cluster containing t. Initially, the cluster can be chosen (degenerately) to be the root cluster of
(say) tree T1.

Upon reaching a node x in the intermediate cluster C, a new and smaller intermediate cluster C � , also
containing t, must be chosen, possibly from a different tree; the packet header must be updated with addr � C � �
that remains the same until reaching C � . Suppose that the new cluster C � containing t is at level i � . After

10

selecting this cluster, the packet is sent off towards C � with the new header, following a shortest path that
stays within the cluster Ĉ at level i � � � that contains both x and C � . This process is repeated until ultimately
the packet reaches the cluster containing only the destination t. The algorithm is presented in Figure 4.2.

1. Let packet header be
�
addr � t � � addr � C ��� .

2. If C contains x, the current node, then
3. find addr � C � � � PrefMatchx � t �
4. let y � NextHopx � addr � C � ���
5. forward packet with new header

�
addr � t � � addr � C � ��� to y.

6. Else (now x �� C)
7. let y � NextHopx � addr � C ���
8. forward packet with unchanged header

�
addr � t � � addr � C ��� to y.

9. End

Figure 4.2: The Forwarding Algorithm at Node x

THEOREM 4.1. The forwarding algorithm has a stretch of at most � 1 � τ � , where τ 1.

Proof. We first show that the algorithm is indeed valid; each of the steps can be executed and the packet
eventually reaches t. Suppose that the packet has just reached a node x in an intermediate cluster C containing
t (with addr � C � in its header); thus x needs to execute Step 3 to find a new cluster C � containing t. Clearly,
PrefMatchx � t � can return the root cluster Croot of any Tj, since it contains t. We show, however, that the
cluster C � returned by PrefMatchx � t � has a small diameter and nodes along a valid shortest path from x to
C � will forward the packet correctly until it reaches C � .
LEMMA 4.2. If the packet is at node x with distance to the target t being d � x � t � ερ i, Step 3 must return
some addr � C � � such that cluster C ��� t is at level � i ��� � or lower in some Tj � with

����� � 	�
�� �
x � C � � being�������

. Furthermore, all vertex v on all shortest paths from x to closex � C � � 	 closev � C � � has a non-null
NextHopv � addr � C � ��� .
Proof. The � ρ � ε � -PPHD ensures that there exists at least one tree T j such that B � x � ερi � is not cut in the

level-i partition Π
�
j �

i ; let Ĉcont � Π
�
j �

i be the level-i cluster in Tj that contains B � x � ερi � . Let Ct � Π
�
j �

i ��� be
the level- � i ��� � cluster in Tj containing t. The

������� 	�
�����
x � Ct � bit must be ������� since B � x � ερi � 	 Ĉcont

in Π
�
j �

i and d � x � closex � Ct ��� d � x � t � ερi; thus PrefMatchx can (and may indeed) just return addr � Ct �
given no “better” choices. However, PrefMatchx always finds a cluster C � in some Tj � , at the lowest level
across all trees, such that t � C � , and

������� 	�
�����
x � C � � is ������� in Routex. Let the level of C � be i � ; the value

i � is at most � i ��� � . Now Let Ĉ � Π
�
j � �

i � ��� be the cluster � levels above C ��� Π
�
j � �

i � in Tj � that contains both x

and C � . (Such Ĉ must exist at level i � � � for addr � C � � to be in Routex.) We know that B � x � ερi � ��� � 	 Ĉ
and d � x � closex � C � ��� ερi � ��� since

� ��� � 	�
��� �
x � C � � is ������� in Routex. Thus all shortest paths from x to

closex � C � � are entirely contained in Ĉ. Hence, the NextHopv � addr � C � ��� pointer at any node v on one of
these paths must be non-null since all shortest paths from v to closev � C � � 	 closex � C � � are all contained in
Ĉ, the cluster � levels above C � in T �j .
It remains to bound the path stretch. Consider the case when a packet is sent from s to t. Let C � be a cluster
at level i � � returned by Step 3 of the forwarding algorithm. Note that if the level i � , then C � 	 � t � and we
send the packet directly to t with τ 	 0. Using these short distances as the base case, we now do induction
on the distance from s to t.

11

If C � is a non-trivial cluster containing t, then we go on a shortest path from s to some vertex
v 	 closes � C � � � C � . Since t � C � , d � s � v � d � s � t � . Because the diameter of C � is at most 2ηi ��� ,
d � v� t � 2ηi ��� � ερi � 1 � d � s � t � . (The last inequality holds because if ερi � 1 � d � s � t � , then PrefMatchs

would have returned a cluster at a level lower than that of C � by Lemma 4.2.) Hence, we can apply the
induction hypothesis to find a path from v to t of length at most � 1 � τ � d � v� t � � 1 � τ � 2η i ��� . The path from
s to t as derived from Routes is of length at most d � s � v � � � 1 � τ � d � v� t � � d � s � t � � � 1 � τ � 2ηi ��� . The stretch
of the path from s is t is then 1 � � 1 � τ � 2ηi ��� � d � s � t � . This quantity is at most 1 � τ since τ 1 and we have
chosen constants so that ηi ��� τερi � 1 � 4.

5 Routing Table Construction and Path Characteristics for � 1 � ε � -Stretch Routing

The hierarchical routing scheme we are going to describe in this section is a completion of what is
lacking in Section 4; hence we focus primarily the process of building up routing tables using a distributed
implementation of Bellman-Ford algorithm for the base model that we introduce in Section 5.1. For overlay
routing, we store the IP address of an intermediate node to reach each destination in the routing tables and the
process of routing table updates are similar to that of prefix routing, e.g., in [14]. Although the Forwarding
algorithm remains the same as that in Section 4.3, we will elaborate in more details on its behavior in
Section 5.2 when it is coupled with the new routing algorithm.

Our routing scheme is similar in spirit to that of Closest Entry Routing (CER) scheme described
in Kleinrock and Kamoun (KK) [16]. They define a hierarchical routing scheme by first specifying an
“optimal” underlying hierarchical clustering structure that they impose on the network nodes, where the
optimization objective is to minimize the routing table length; each level-k cluster is defined recursively as
a set of level- � k � 1 � clusters, with the level-0 clusters being individual nodes. This leads naturally to a tree
representation as shown in Figure 5.3 (a), where internal tree nodes represent clusters; Figure 5.3 (b) shows
that the destination addresses in the routing table of node A corresponds to clusters at different levels of the
decomposition tree, hence reflecting the structure of the hierarchical clustering of network nodes. In KK,
two nodes share common routing table entries for all the clusters that contain both of them. KK assumes
that all clusters at the same level have the same number of sub-clusters within them, and each cluster is
a connected component. The KK hierarchical routing procedure leads a message down a tree path, fixing
more prefix digits at each step, much as prefix routing, traversing smaller and smaller clusters that contain
the destination node until it reaches the destination itself.

0 1 2 3

00
01 02 03 10 11 12 13

000
001 002

003

0000
0001

0002
0003

20
21

22
23 30

31
32 33

Level 3

Level 2

Level 1

Level 0
A Level 3 0*** 1*** 2*** 3***

Level 2 00** 01** 02** 03**
Level 1 000* 001* 002* 003*
Level 0 0000 0001 0002 0003

(a) A tree representation (b) Routing table entries in node A

Figure 5.3: A 4-level hierarchical clustering structure of network nodes

The reduction of routing table size generally leads to an increase in network path length. In order to
derive bounds on the increase in the average path length, they further assume that a shortest-path between

12

two nodes in a cluster lies within the cluster. They also prescribe an upper-bound of dk on the (strong)
diameter of a kth level cluster, with dk decreasing as k decreases. They show that routing schemes based
on the hierarchical clustering model cause essentially no increase in the average network path length for
a family of large distributed networks. Specifically, the networks they consider are all connected graphs
upon which it is possible to fit a hierarchical clustering whose outcome satisfies the assumptions above. In
addition, (a) the resulting clusters at any level satisfy the following: the diameter of any cluster S chosen is
bounded above by O ��� S � ν � for some constant ν � � 0 � 1 � , and (b) the average distance between nodes in the
network is Θ � Nν � , where N is the size of such a network.

In contrast, our hierarchical routing schemes give bounds on the path stretch on a per node-pair level
on certain networks that are connected graphs G, where the natural metric � X � d � induced by shortest path
distances between any pair of nodes in G is a doubling metric. In addition, the main improvement our work
over that of KK is: while the KK routing scheme is based on assumptions regarding the existence of a “good”
partition of the network, the method itself does not provide an algorithm for computing such a partition;
we are able to prove the existence of a � ρ � ε � -PPHD with a support on m Hierarchical Decompositions
and actually find them by following the Clustering algorithm and its constructive algorithm described in
Section 3. Note that while we guarantee a degree bound for the decomposition trees across all levels, we do
not require they are exactly the same.

It would be ideal if once we construct such a set of network partitions, we can run the hierarchical
routing algorithm specified in KK at each individual decomposition tree. However, it is not possible to
directly apply KK’s routing scheme or their proof techniques for three reasons. First, while KK assumes
that each cluster subnetwork is fully connected, this is not satisfied in our decomposition. Second, the
shortest paths between two nodes in a cluster are not guaranteed to stay within the cluster. Finally, although
the maximal distance in G between vertices of Ck, for all 0 k h, is bounded within the diameter of
Ck, 2ηk, which is geometrically decreasing as k decreases, it is a weak diameter bound and not necessarily
satisfied by the distance induced by the subgraph corresponding to each cluster Ck.

We thus adopt as many definitions and notations as possible from KK in this section while inventing
some new techniques for addressing the above issues in the design and specification of a modified
hierarchical routing scheme given a � ρ � ε � -PPHD µm with a support on m HDs and in the analysis of the
characteristics of paths as induced by the routing tables thus created. The important property of a � ρ � ε � -
PPHD that we will use in defining our routing scheme is that, for ρi � 1 � r ρi, there is at least one tree Tj

such that B � s � εr � is contained in a level i cluster Ci in the level-i partition Π
�
j �

i ; since a ball is a connected
component, all shortest paths from s to vertices within B � s � εr � must be contained within Ci in the level-i

partition Π
�
j �

i .

5.1 Routing Table Update Rules In this section, we focus on the process of building up routing tables
once the nodes in the network have been assigned addresses that reflect their positions in each of the m
decomposition trees. During this process, routing information is aggregated and exchanged between special
nodes in different clusters at each level. We refer to such special nodes as exchange nodes (for routing) or
entry points (for packet forwarding) of their corresponding clusters. The algorithm for selecting exchange
nodes for each cluster is an independent issue that we do not address in this paper. Similar to the CER
hierarchical routing scheme described in KK, no routing information describing the internal behavior of
a cluster is propagated outside a cluster; hence a cluster is regarded from outside as a single node whose
distance to itself is zero.

We use a modified version of the distributed Bellman-Ford algorithm as in Fig 5.4 to perform routing
updates: especially, to establish the next-hop entries and update estimated path lengths for destination
clusters in the routing tables for the basic model. For routing updates, we are going to focus on entries
for one specific decomposition tree T j that corresponds to ΠΠΠ

�
j � 	 � Π

�
j �

i � hi � 0.

13

Let s and t be two neighboring nodes (that they are connected by a channel � s � t �) which belong to

the same kth level cluster Ck � Π
�
j �

k and not to any lower level cluster in T j, where k � � 1 � 2 ������� � h � . Let

Ck � 1 � s � � Ck � 1 � t � � Π
�
j �

k � 1 respectively denote the k � 1st level clusters to which s and t each belong in tree
Tj. Let Ck � s � t � denote the level-k cluster that contains both s and t; note that Ck � 1 � s � � Ck � 1 � t � 	 Ck � s � t � in
Tj since Tj represents a laminar decomposition. We use lca j � s � t � to denote the lowest common ancestor of

s and t in a particular tree Tj; hence lca j � s � t � 	 Ck � s � t � � Π
�
j �

k . For a pair of nodes s, t, lca j � s � t � can be
determined by inspecting the common prefixes of local addresses, addr j � s � and addr j � t � .

Recall that in node s, for any cluster Ci � s � in Tj that contains s at level i, for all i 	 0 ������� � h, routing table

entries are kept for all clusters that are descendants of Ci � s � � Π
�
j �

i within � levels down a decomposition tree

for Tj � � j. Thus each entry in the routing table Routes for Tj corresponds to some level- � i � � cluster C � � Π
�
j �

i �
in Tj, where i � 	 0 � 1 ������� � h � 1; that entry is also denoted as C � and indexed by the global address addr � C � �
of its associated cluster C � , and contains the following fields in Routes: (a) a next hop NextHops � addr � C � ���
to reach C � from s, (b) a path length field HF � s � C � � that is the current path length at node s for reaching
cluster C � through NextHops � addr � C � ��� , and (c) a

� ����� 	�
��� �
s � C � � bit. Initially, the path length fields for

all the entries in Routes for tree Tj are set to ∞ except for the self entries as shown in the Initialization
Procedure in Fig 5.4.

We use Ci � s � C � � 	 Ci � s � � Π
�
j �

i to denote the level-i common ancestor of s and C � � Π
�
j �

i � such that

i � i � � 1 and Ci � s ��� C � . Note that Ch � s � C � � 	 Ch � s � contains C � � Π
�
j �

i � , for all i � h � 1, since Ch � s �
contains the entire network. Similarly, we use lca j � s � C � � to denote the lowest common ancestor of s and

C � � Π
�
j �

i � in tree Tj, where C � 	 lca j � s � C � �
	 Ci � s � C � � for all i such that C � 	 Ci � s � . For node s and cluster
C � , the lca j � s � C � � can be determined by inspecting the common prefixes of local addresses addr j � s � and
addr j � C � � .

As a consequence of the routing table specification, routing table entries at node s and t at all levels
below k � � in Tj refer to different cluster destinations; whereas all the other entries from level k � � up to
h refer to the same cluster destinations in T j. The objective of the updating procedure is to compare the
estimated lengths of the paths from s or t to any common destination and to update the routing tables to
reflect the shorter paths. Whenever s receives a route update from t, for each common destination cluster
C � , its corresponding entry is potentially updated with a new next hop NextHops � addr � C � ��� , the path length
HF � s � C � � through the new NextHops � addr � C � ��� as in Step 2-4, and the

������� 	�
�����
s � C � � bit as in Step 5-9 of

the Route Update Procedure in Fig 5.4.
We have a slightly different way of setting the

������� 	�
�����
s � C � � bit from that specified in Section 4.2 to

maximize the chance of setting it ������� . However, as before, once the
����� � 	�
�� �

s � C � � bit is set to be ������� , a
shortest path from s to C � is indeed guaranteed by following the next hop in Routes for an entry C � and that
in Routev of each subsequent nodes v along the path from s to an entry point of C � .

Let a common destination entry for T j in Routes and Routet correspond to a level- � i � � cluster C � � Π
�
j �

i � ,
where i � � k � � . We denote the level of lca j � s � C � � in Tj as l0; The following inequalities, i � � 1 l0 i � � � ,
must be satisfied for C � to be an entry in Routes. The

����� � 	�
�� �
s � C � � bit is set to be ������� so long as for

“any” of the common ancestor Ci � s � C � � of s and C � at level i, for all l0 i i � ��� , both HF � s � C � � ερi and
B � s � ερi � 	 Ci � s � C � � are true. It is set to be ������� � otherwise. Note that when i � � h � � , both HF � s � C � � ∆
and B � s � ∆ � 	 Ch � s � C � � are always true since Ch � s � C � � is the entire network; hence we set

����� � 	�
�� �
s � C � � bit

������� for all C � at level h � � and above in Step 5 of the Initialization Procedure.
The reason we set

� ��� � 	�
��� �
s � C � � bit this way is the following. Recall that by constructing the m

decomposition trees, each node s “knows” if B � s � ερi � is contained Ci � s � � Π
�
j �

i in tree Tj; naturally, if

B � s � ερi � 	 Ci � s � � Π
�
j �

i , then B � s � ερi � 	 Cl � s � � Π
�
j �

l is true for all l � i. However, if B � s � ερi � �� Ci � s � ,
we do not assume that we know information such as “whether a ball B � s � r � of a radius ερ i � r � ερ

�
i � 1 � is

14

Initialization Procedure: initialize Routes for tree Tj at node s
1. For i 	 0 � 1 ������� � h
2. HF � s � Ci � s ��� 	 0, and

� ����� 	�
��� �
s � Ci � s ��� 	 �������

3. For all other entries C � �� s, let i � = level of C � in tree Tj

4. HF � s � C � � 	 ∞
5. If i � � h � � , then

� ����� 	�
��� �
s � C � � 	 �������

6. End

Route Update Procedure: upon receiving a route update from t such that lca j � s � t ��	 Ck

1. For each common entry C � � Π
�
j �

i � , which represents a level- � i � � cluster in Tj, where i � � k � �
2. If HF � s � C � � � d � x � t � � HF � t � C � � , then
3. HF � s � C � � � d � x � t � � HF � t � C � �
4. nexthop field of C � � t
5. If i � � h � � , then
6. Let l0 = level of lca j � s � C � � in Tj and m satisfies ερm � 1 HF � s � C � � ερm

7. for all levels i : max � l0 � m � i i � � �
8. If B � s � ερm � 	 B � s � ερi � 	 Ci � s � in Tj, then
9.

����� � 	�
�� �
s � C � � 	 �������

10. Goto 1
11. End

Figure 5.4: DISTRIBUTED BELLMAN-FORD Algorithm for Tj at Node s

contained in Ci � s � or not”, since that is not the type of information that our constructive algorithm provides
by default; note that if r ερ

�
i � 1 � , we will just check if B � s � ερ

�
i � 1 � � 	 Ci � 1 � s � to decide if B � s � r �
	 Ci � s � .

Our routing algorithm thus makes minimal assumptions about the information that is available at each node
about balls around it being contained at a certain level or not.

Another specification in terms of routing that is different from that of Section 4.2 is the following.
Assume we route a packet from s toward C � . Instead of assuming the packet should always enter a cluster
C � through the closest point x 	 closes � C � � in C � to s, we only require that the packet enters C � through a

closest entry point e0 � C � . Correspondingly, for node s and a level- � i � � cluster C � � Π
�
j �

i � in Tj, the function
NextHops � addr � C � ��� returns the next hop on the path from s to e0 provided that the next hop does not leave
the cluster C at level � i � � � � that contains C � , and null otherwise. Recall an entry point e0 � C � advertises
routes for C � it belongs to. Note also e0 does not need to be the closest one to s in C � in order to achieve
� 1 � τ � -stretch routing. (This is also true for overlay routing.) As a basic routing scheme, we keep a next hop
NextHops � addr � C � ��� in Routes toward a closest entry point e0 � C � for the sake of routing table consistency
that we will elaborate shortly.

For overlay routing, we keep the IP address of an arbitrary entry point e0 to C � (instead of a next hop
NextHops � addr � C � ��� toward e0), since IP routing will deliver a packet from s to e0 directly given the IP
address of e0 without having to rely on hop-by-hop forwarding as in the basic model that we focus in this
section.

DEFINITION 5.1. We call a path an internal path in cluster C if all the nodes in that path belong to C.

Similar to KK, we define the equilibrium condition as the situation when no changes occur in the
topology of network and the contents of HF � s � C � � in the routing table reach “minimal” constant values after
a certain number of updates.

15

CLAIM 5.2. The distributed Bellman-Ford algorithm guarantees that in equilibrium condition, HF � s � C � �
will be the length of the shortest path from s to a closest entry point e0 of C � when

������� 	�
�����
s � C � � is

�������
,

i.e., HF � s � C � �
	 d � s � e0 � in Routes.

Proof. Let the level of C � � Π
�
j �

i � in tree Tj be i � � h ��� and let the level of lca j � s � C � � be l0. We only

set
������� 	�
�����

s � C � � ������� in the routing algorithm when for “any” of the level-i cluster Ci � s � � Π
�
j �

i , where

l0 i i � � � , both HF � s � C � �� ερi and B � s � ερi � 	 Ci � s � � Π
�
j �

i hold. Denote the lowest such level r, where
r � � l0 � i � � � � . All shortest paths from s to some entry point x � � C � of distance d � s � x � � HF � s � C � � ερr

are thus internal to Cr � s � � Π
�
j �

r in Tj, since such paths are contained in B � s � ερr � , which is a connected

component entirely contained in Cr � s � � Π
�
j �

i . Note that some x � � C � must have advertised itself as an entry

point to C � for such paths to be established within � Cr � s � � C � � and for C � � Π
�
j �

i � to appear in Routes. Thus
C � 	 Cr � s � since x � � � C � � Cr � s � � �	 /0 and r � l0; we thus denote Cr � s � as Cr � s � C � � from this point on.

In addition, every node v � Cr � s � C � � , including those along the shortest paths from s to x � inside
B � s � ερr � , contains a routing table entry to C � , since it is a descendant of Cr � s � C � � within � levels down
the decomposition tree Tj. Propagation and subsequent updating of routing information among nodes of
Cr � s � C � � is equivalent to finding minimum path internal to Cr � s � C � � from any node v � � Cr � s � C � � � C � � to an
entry point of C � that is closest to node v; for s, the closest entry point to C � is e0.

Improvements are made sequentially at each update over the distance HF � u � C � � from u to C � among
nodes within B � s � ερr � , until it reaches a minimal constant value if no changes occur in the topology of
the network; hence all u � B � s � ερr � “knows” how to route to C � with a path of bounded length. Given
multiple entry points to C � , the distributed Bellman-Ford algorithm guarantees that we find a shortest path
not only to some entry point x � of C � , but also to the closest, e0 of C � , from s in equilibrium condition, i.e.,
HF � s � C � �
	 d � s � e0 � . The entire path stays within B � s � ερr � 	 Cr � s � C � � , where r is specified as above.

Note that when i � � h � � , both HF � s � C � � ∆ and B � s � ∆ � 	 Ch � s � C � � are always true since Ch � s � C � � is
the entire network; hence we set

������� 	�
�����
s � C � � ������� for all C � at level h � � and above. The same argument

as above applies to this case.

The reason we require a closest entry point to C � is primarily for route convergence purpose when our
protocol serves as an underlying routing scheme. For overlay routing, we allow an entry point to be any
exchange node or simply a random node within the cluster, which is commonly assumed in peer-to-peer
networks. Note that an exchange node of a given cluster is a node of that cluster which is connected
to one or more nodes external to that cluster as defined in KK. We will use exchange node and entry
point interchangeably unless we specify otherwise. The � 1 � τ � -stretch property we are going to prove
for hierarchical routing paths does not require the entry point for a cluster C � to be the closest to s either – a
point that we will not elaborate on from now on.

FACT 5.3. If a shortest path from s to e0, an entry point to a level- � i � � cluster C � � Π
�
j �

i � , is internal to

Ci � s � � Π
�
j �

i in tree Tj, where i � i � , then cluster C � � e0 must be a sub-cluster that is entirely contained in
Ci � s � in Tj, i.e., C � 	 Ci � s � .

Proof. First observe e0 � � Ci � s � � C � � , since shortest path from s to e0 is internal to Ci � s ��� Π
�
j �

i in Tj. Since
Tj represents a laminar decomposition, where a lower level cluster is always entirely contained in a higher
level cluster, e0 � Ci is sufficient to guarantee that � C � � t � 	 Ci.

5.2 Path Characteristics We forward packets according to the Forwarding algorithm in Figure 4.2. Let s
and t be two arbitrary nodes. For destination t, let C � � t � be the cluster whose addr � C � � t ��� is returned by the

function PrefMatchs � t � at Step 3 of the Forwarding algorithm. We assume, w.l.o.g., C � � t � � Π
�
j �

i � , i.e., C � � t �
16

is in the level- � i � � partition Π
�
j �

i � , where i � h � � , in tree Tj. Recall that h 	 � logρ ∆ � . Let l0 h be the level

of lca j � s � C � � t ��� � Π
�
j �

l0
in Tj.

We say C � � t � � t is the cluster that has the longest valid prefix matching with t in Routes, since the
level of C � � t � is the lowest across all trees among clusters C � in Routes such that C � � t and

������� 	�
�����
s � C � �

is ������� . Before we proceed, we first give more definitions, some of which are adapted from KK.
hc

st : Length of the estimated minimum path from node s to node t as derived from the routing
information at node s. (The superscript c stands for clustered routing.)

Exchange node ez: a node of a cluster C that is connected to one or more nodes external to C.
Ai � t � : Subset of all exchange nodes (entry points) that connect a level-i cluster Ci � t � � Π

�
j �

i in tree Tj,

for all j 	 1 ������� � m, with any other level-i cluster within the same ancestor Cn � t � � Π
�
j �

n in the same tree Tj,

for all n i � � . From the above definitions, all entry points ez of C � � t ��� Π
�
j �

i � that connect C � � t � to any other

level- � i � � cluster that stays within Ci � ��� � t � � Π
�
j �

i � ��� in tree Tj hence belong to Ai � � t � .
Let e0 � Ai � � t � � C � � t � be the closest entry point for s to reach C � � t � � Π

�
j �

i � in Tj.

Ĉk � s � t � : For k h � 1, Ĉk � s � t ��� Π
�
j �

k is the level-k cluster in Tj, where l0 k i � � � , that is the lowest-
level common cluster of s and t such that B � s � ερk � 	 Ĉk � s � t � and B � s � ερk � contains a shortest path from s

to C � � t � � Π
�
j �

i � in Tj, where i � h � � ; such Ĉk � s � t � � Π
�
j �

k always exists since we know B � s � ερr �
	 Cr � s � t �
and HF � s � C � � t ��� ερr must both hold for some l0 r i � � � , given that

� ��� � 	�
��� �
s � C � � t ��� is ������� in

Routes, due to the specification of the distributed Bellman-Ford algorithm. Let k be the lowest such level
r. Note that C � � t ��	 Ĉk � s � t � since Tj represents a laminar decomposition and k is at least l0. For k 	 h,

Ĉk � s � t � 	 Ch � s � t � � Π
�
j �

h , is the root cluster X of Tj that corresponds to the entire network G. In this case,

Ĉk � s � t � 	 Ch � s � t � always contains all shortest paths from s to C � � t � � Π
�
j �

i � in Tj, where i � 	 h � � , given that
G is a connected graph.

hi
sez
� t � : Length of the shortest path from node s to an exchange node ez � Ai � � t � � C � � t � as contained

in Ĉk � s � t � defined above. The superscript i stands for an internal path within Ĉk � s � t � . At equilibrium,
hi

se0
� t � 	 HF � s � C � � t ��� 	 d � s � e0 � since the shortest path from s to e0 is internal to Ĉk � s � t � , and by Claim 5.2,

HF � s � C � � t ��� 	 d � s � e0 � in Routes given that
� ����� 	�
��� �

s � C � � t ��� is ������� in Routes and e0 is the closest entry
point to C � � t � for node s. Recall that HF � s � C � � t ��� is the current path length filed in Routes for node s to

reach C � � t � � Π
�
j �

i � via its current NextHops � addr � C � � t ����� . Note when the shortest path from s to ez is not
internal to Ĉk � s � t � , we denote it with hi

sez
	 ∞.

In order to reach t, function PrefMatchs � t � is called by the Forwarding algorithm at node s, which
looks across Routes for all trees and picks a tree Tj that contains C � � t � with a closest entry point
e0 � Ai � � t � � C � � t � . Node s then stores

�
addr � t � � addr � C � � t ����� in the packet header and sends the packet

to NextHops � addr � C � � t ����� ; the packet header remains the same while intermediate nodes v forward the
packet along a shortest path from s to e0, that is contained in the common cluster Ĉk � s � t � of s and t in Tj,
until it reaches e0.

The key observation we have regarding a path hc
st from s to t is the following. The path may not be

contained within the lowest common ancestor lca j � s � t ��� Π
�
j �

l0
of s and t in a particular tree Tj. However, the

segment from s to C � � t � , is contained within Ĉk � s � t � in Tj, where l0 k i � � � , when following a shortest
path from s to e0, which is the closest entry point to C � � t � . Recall Ĉk � s � t � is a common cluster of s and C � � t � at

a level higher than that of lca j � s � t � . Conceptually, we route packets from s to t within Ĉk � s � t ��� Π
�
j �

k to avoid

being stuck in lca j � s � t � � Π
�
j �

l0
, which may not contain any path (e.g., when lca j � s � t � in Tj is disconnected)

or contains only very long paths from s to t. The shortest path from s to e0 is thus an internal path relative to
Ĉk � s � t � , which we denote with hi

se0
.

Finally, We define a constant φ 	 4
ρ� ε that we will use throughout this section. It is easy to verify

17

that 2ηi ��� 2
ρ� 	 1

�
ρ � 1 � ε ερi � φερi. Recall that � 	 Θ � logρ 1 � ετ � and ρ 	 Θ � 1

ε � , where we choose suitable

constants so that ρ2 1 � φ
φ is satisfied. The rest of this section is dedicated to the proof of the main theorem

of this section, before which we first prove two lemmas regarding the level of C � � t � and Ĉk � s � t � given d � s � t � .
Note that we always have k h and i � h � � . We will ignore the case when k 	 h until the end of this
section.

LEMMA 5.1. Let d � s � t � � 1 � φ � ερi, where 1 i h. The cluster C � � t � � Π
�
j �

i � in Tj that has the longest
valid prefix matching with t with

� ����� 	�
��� �
s � C � � t ��� 	 �������

, is at a level i � max � 0 � i � � � ; the common

cluster Ĉk � s � t � � Π
�
j �

k as defined above that contains the shortest path from s to C � � t � is at level k i.

Proof. We first prove the lemma when i � with the following claim.

Case i � .
CLAIM 5.4. Let ερi � 1 � d � s � t � ερi for 1 i � . Then C � � t � 	 C0 � t � is t itself; the lowest common cluster
Ĉk � s � t � such that B � s � ερk �
	 Ĉk � s � t � and B � s � ερk � contains the shortest path from s to C0 � t � , i.e., t itself, is
at level k 	 i.

Proof. Node s has a routing table entry for all t such that d � s � t � ερ � , since B � s � d � s � t ��� 	 B � s � ερ � � is fully

contained in some level- � cluster C � � s � � Π
�
q �
� in some tree Tj, and C � � t � is C0 � t � � Π

�
q �

0 .
The properties of the � ρ � ε � -PPHD ensure that there is at least one tree T j such that B � s � ερi � 	 Ci � s � �

Π
�
j �

i in Tj. Since d � s � t � ερi, we know that t � B � s � ερi � and C0 � t � 	 Ci � s � in Tj. The lowest common
cluster Ĉk � s � t � such that B � s � ερk � 	 Ĉk � s � t � and B � s � ερk � contains the shortest path from s to C � � t �
	 C0 � t � ,
i.e., t itself, is Ci � s � � Π

�
j �

i in tree Tj and k 	 i.

We now prove the general case when i � � .
Case h � 1 � i � � . Let x � � Ai ��� � t � be an arbitrary entry point to some level- � i � � � cluster C � t
in some tree; hence d � x � � t � 2ηi ��� φερi since x � � t � C. Applying the triangle inequality, we have
d � s � x � � d � s � t � � d � t � x � � ερi; thus all shortest paths from s to x � , for all x � � Ai ��� � t � , are contained in
B � s � ερi � .

The properties of the � ρ � ε � -PPHD ensure that there is at least one tree Tq such that B � s � ερi � is not cut

in the level-i partition Π
�
q �

i ; let Ci � s � � Π
�
q �

i be the level-i cluster in Tq such that B � s � ερi � 	 Ci � s � . Since

d � s � t � � 1 � φ � ερi, we have t � B � s � ερi � 	 Ci � s � � Π
�
q �

i . Let Ci ��� � t � � Π
�
q �

i ��� be the level- � i ��� � cluster
in Tq containing t; we know that Ci ��� � t � 	 Ci � s � , since t � � Ci ��� � t � � Ci � s � � and Tq represents a laminar

decomposition. Hence we have Ci � s � 	 Ci � t � 	 Ci � s � t � in the level-i partition Π
�
q �

i in tree Tq.
The

� ����� 	�
��� �
s � Ci ��� � t ��� bit must be set ������� in Routes by the distributed Bellman-Ford algorithm in

node s, since (a) B � s � ερi � 	 Ci � s � t � � Π
�
q �

i , and (b) HF � s � Ci ��� � t ��� ερi in Routes for entry Ci ��� � t � � Π
�
q �

i ���
in tree Tq at equilibrium, given that all shortest paths from s to an entry point x � , for all x � � Ai ��� � t � � Ci ��� � t � ,
are internal to B � s � ερi � . Thus PrefMatchs � t � can (and may indeed) just return addr � Ci ��� � t ��� given no
“better” choices, in which case, i � 	 i � � and k i.

However, PrefMatchs � t � always finds a cluster C � � t � � Π
�
j �

i � at the lowest level across all trees, such
that t � C � � t � and

� ��� � 	�
��� �
s � C � � t ��� is ������� in Routes; hence C � � t � is at level i � i � � .

We know that B � s � ερr � 	 Cr � s � t � � Π
�
j �

r and HF � s � C � � t ��� ερr must both hold, for some l0 r i � � � ,
in order for

� ��� � 	�
��� �
s � C � � t ��� bit to be ������� , due to the specification of the distributed Bellman-Ford

algorithm. Let k be the lowest such r; we have k i � � � i for i � � .
Case i 	 h. We have k h and i � h � � trivially, since both holds for all possible distances of d � s � t � up to
∆, which is the diameter of the network G.

18

CLAIM 5.5. When C � � t � � Π
�
j �

1 is at level 1, d � s � t � � ερ � .

Proof. Prove by contradiction. Assume that d � s � t � ερ � . By Claim 5.4, we have C � � t � 	 C0 � t � ,
contradicting the assumption that C � � t � is at level 1.

LEMMA 5.2. Let C � � t � � Π
�
j �

i � be the cluster returned by function PrefMatchs � t � at Step 3 in the Forwarding
algorithm and its level be i � , where h � � � i � � 1. Then d � s � t � � � 1 � φ � ερi � ��� � 1.

Proof. Prove by contradiction. Assume that d � s � t � � 1 � φ � ερi � ��� � 1. By lemma 5.1, the cluster C � � t � � t
that has the longest valid prefix matching with t with the

������� 	�
�����
s � C � � t ��� bit set ������� in Routes is at level

at most i � � 1, thus contradicting the assumption that C � � t � is at level i � .
We next prove the following lemma regarding the level of C � � t � given the level of Ĉk � s � t � .

LEMMA 5.3. Let a level-k cluster Ĉk � s � t � � Π
�
j �

k in tree Tj, where h � 1 � k � � , be the lowest-level common

cluster of s and t such that a shortest path from s to C � � t � � Π
�
j �

i � is contained in B � s � ερk � 	 Ĉk � s � t � � Π
�
j �

k .

Then C � � t � � Π
�
j �

i � is at either level k � � or level k � � � 1.

Proof. Be definition of Ĉk � s � t � , we know that l0 k i � � � and l0 � i � � 1, where l0 is the level of
lca j � s � C � � t ��� . Thus k � � i � k � 1. The lowest level that C � � t � can be is at k ��� , and we argue that
C � � t � can not be at a level higher than k � � � 1.

Let e0 be a closest entry point to C � � t � for s, such that e0 � Ai � � t � � C � � t � and the shortest path from s

to e0 is internal to B � s � ερk � 	 Ĉk � s � t � � Π
�
j �

k ; hence d � s � e0 � ερk. Since C � � t � is at least one level below
Ĉk � s � t � in Tj and e0 � t � C � � t � , we have d � e0 � t � 2ηk � 1. Note that C � � t � 	 Ĉk � s � t � by Fact 5.3. Applying the
triangle inequality, we have d � s � t � d � s � e0 � � d � e0 � t � ερk � 2ηk � 1.

Now we examine the distance of d � s � y � � for all y � � Ak ��� � 1 � t � . Given that d � t � y � � 2ηk ��� � 1, we apply
the triangle inequality and obtain:

d � s � y � � d � s � t � � d � t � y � � d � s � e0 � � d � e0 � t � � d � t � y � � ερk � 2ηk � 1 � 2ηk ��� � 1 ερk � 1 �

where ��� 2 and ρ 	 Θ � 1
ε � .

Thus all shortest paths from s to y � , for all y � � Ak ��� � 1 � t � , are contained in B � s � ερk � 1 � . The
properties of the � ρ � ε � -PPHD ensure that there is at least one tree T j � such that B � s � ερ

�
k � 1 � � 	 Ck � 1 � s � �

Π
�
j � �

k � 1. Let Ck ��� � 1 � t � � Π
�
j � �

k ��� � 1 be the level- � k � � � 1 � cluster that contains t in T j � . Given that t �
B � s � ερk � 1 � 	 Ck � 1 � s � , we know that Ck ��� � 1 � t �
	 Ck � 1 � s � � Π

�
j � �

k � 1 since t � � Ck ��� � 1 � t � � Ck � 1 � s � � �	 /0 and

Tj � represents a laminar decomposition. Thus Ck ��� � 1 � t � � Π
�
j � �

k ��� � 1 must appear in s’ routing table with����� � 	�
�� �
s � Ck ��� � 1 � t ��� set ������� , since Ck ��� � 1 � t � 	 Ck � 1 � s � is within � levels below Ck � 1 � s � in Tj � and all

shortest paths from s to Ck ��� � 1 � t � are contained in B � s � ερk � 1 � 	 Ck � 1 � s � in Tj � .
Thus the level i � of C � � t � must satisfy k � � i � k � � � 1 for C � � t � � Π

�
j �

i � to be returned by
PrefMatchs � t � .

FACT 5.6. When k 	 h and Ĉk � s � t � � Π
�
j �

k is Ch � s � t � � Π
�
j �

h , which is the entire network G, we know that

C � � t � � Π
�
j �

i � is at level i � 	 h � � 	 k � � .
The next lemma shows the path characteristics from s to t up till entry point e0 of C � � t � � Π

�
j �

i � .

19

LEMMA 5.4. All messages to be forwarded or sent from node s to node t will follow the same shortest path

up to the closest entry point e0 of C � � t � � Π
�
j �

i � to s. The shortest path from s to e0 is internal to Ĉk � s � t ��� Π
�
j �

k
in Tj; it has a length of hi

se0
that satisfies:

hi
se0

	 minez � Ai �
�
t ��� C � �

t � � hi
sez
� � (5.3)

where i � is the level of C � � t � � Π
�
j �

i � and k i � � � , and Ĉk � s � t � � Π
�
j �

k , Ai � � t � , and hi
sez

are as defined

above, and hi
sez

	 ∞ when the shortest path from s to ez is not contained in Ĉk � s � t � . At equilibrium,
hi

se0
	 HF � s � C � � t ��� 	 d � s � e0 � . Finally, all vertices v on the shortest path from s to e0 have a non-null

NextHopv � addr � C � � t ����� and share the same closest entry point e0 to cluster C � � t � .
Proof. By the definition of Ĉk � s � t � , for k h � 1, we know that Ĉk � s � t � � Π

�
j �

k is the level-k cluster,
where l0 k i � � � , in tree Tj, that is the lowest-level common cluster of s and t such that B � s � ερk � 	
Ĉk � s � t � � Π

�
j �

k and B � s � ερk � contains a shortest path from s to C � � t � � Π
�
j �

i � in Tj; specifically, B � s � ερk �
contains a shortest paths from s to e0, and d � s � e0 � ερk. By Fact 5.3, we have C � � t � 	 Ĉk � s � t � . When

k 	 h, Ĉk � s � t � 	 Ch � s � t � � Π
�
j �

h is the root cluster X and naturally contains all shortest paths from s to
C � � t � 	 Ch � s � t � , given that G is a connected graph.

All the nodes in Ĉk � s � t � � Π
�
j �

k contain one entry for C � � t � � Π
�
j �

i � in their routing tables, since k i � � �
and C � � t �
	 Ĉk � s � t � is a cluster within � levels below Ĉk � s � t � � Π

�
j �

k in tree Tj. Propagation and subsequent

updating of routing information among nodes of Ĉk � s � t � � Π
�
j �

k in Tj is equivalent to finding the minimum
path internal to Ĉk � s � t � from any node u � � Ĉk � s � t � � C � � t � � to an entry point of C � � t � that is closest to node
u; for s, the closest entry point to C � � t � is e0 such that hi

se0
	 minez � Ai �

�
t ��� C � �

t � � hi
sez
� . Hence, at equilibrium,

e0 is on the minimal path from s to C � � t � and hi
se0

	 HF � s � C � � t ��� represents the length of such minimal path.
All shortest paths of length d � s � e0 � from s to e0 are internal to Ĉk � s � t � ; when k h � 1, it is within

B � s � ερk � 	 Ĉk � s � t � � Π
�
j �

k . Hence, at equilibrium, within B � s � ερk � � Ĉk � s � t � � Π
�
j �

k for k h � 1, or within
Ĉk � s � t � 	 X for k 	 h, a shortest path of length hi

se0
	 d � s � e0 � is formed between s and e0 among nodes

within a connected component, that share a common entry for C � � t �
	 Ĉk � s � t � in their routing tables. Thus
we have HF � s � C � � t ��� 	 hi

se0
	 d � s � e0 � .

For any node v on one of these shortest paths from s to e0, s and v must share the same closest entry
point e0 to C � � t � at equilibrium, due to the execution of the distributed Bellman-Ford algorithm; furthermore,

intermediate nodes v will be able to route the packet toward C � � t � � Π
�
j �

i � in Ĉk � s � t � consistently since they

each contain an entry for C � � t � � Π
�
j �

i � with a non-null NextHopv � addr � C � � t ����� field, given that these paths

stay within Ĉk � s � t � � Π
�
j �

k , where k i � ��� . The Forwarding algorithm will forward messages from node s
destined to node t along the shortest path thus formed to first reach C � � t � in tree Tj.

The process of finding the next entry point repeats by the time the packet reaches e0, an entry point to

C � � t � � Π
�
j �

i � in tree Tj, until the packet reaches its destination t. For example, e0 selects a new tree Tl that

contains the next cluster C � � � t ��� Π
�
l �

i � � with a longer prefix matching with t than C � � t � , and updates the packet
header with C � � � t � accordingly. Note that C � � � t � and C � � t � may belong to two different trees; hence while
intermediate nodes between one entry point and another never switch trees, upon reaching an entry point, it
is free to switch. The next lemma states the upper bound on the level i � � of C � � � t � � Π

�
l �

i � � , and the level of the

common cluster Ĉk � x � t � � Π
�
l �

k that contains a shortest path from x to C � � � t � in B � x � ερk � � Ĉk � x � t � � Π
�
l �

k . If
x is t itself, we are done with forwarding.

LEMMA 5.5. Let 1 i � h � � be the level of C � � t � � Π
�
j �

i � . Once the packet from s reaches an entry point x

in Ai � � t ��� C � � t � , including e0, x will find a new level- � i � � � cluster C � � � t � � Π
�
l �

i � � at level i � � max � 0 � i � � 2 � in

some tree Tl , and the common cluster Ĉk � x � t � � Π
�
l �

k as defined above is at a level k i � � 2 � � .
20

Proof. We have d � x � t � 2ηi � φερi � ��� , since x � Ai � � t � � C � � t � is an entry point to some level- � i � � cluster

C � � t �
� Π
�
j �

i � containing t. We have d � x � t �� � 1 � φ � ερi � � 2 ��� so long as ρ2 1 � φ
φ , which can be satisfied when

suitable constants are chosen for � 	 Θ � logρ 1 � ετ � and ρ 	 Θ � 1
ε � . Lemma 5.1 tells us that k � i � � 2 � � and

C � � � t � � Π
�
l �

i � � � is at level max � 0 � i � � 2 � .

We are now ready for the main theorem that summarizes the path properties.

THEOREM 5.1. Follow the Forwarding algorithm in Section 4.3, for all k h, the path from s to t as
derived from the routing information at node s satisfies the recursive equation below, hc

st 	 hi
se0
� hc

e0t , where
the shortest path hi

se0
from s to e0 is contained in Ĉk � s � t � and its properties are as specified in Lemma 5.4.

Secondly, the lookup path has a stretch of at most � 1 � τ � . Finally, the algorithm switches trees for at most
max � 0 � k � �
� 1 � times. When d � s � t � � 1 � φ � ερn, where n h, we have k n; otherwise, k h.

Proof. The proof of the theorem is by induction on k, which is the level of the lowest common cluster
Ĉk � s � t � of s and C � � t � such that a shortest path from s to C � � t � is contained in (a) B � s � ερk � 	 Ĉk � s � t � for

k h � 1, or in (b) Ĉk � s � t ��	 Ch � s � t � for k 	 h. Recall i � is the level of C � � t � � Π
�
j �

i � , and e0 � Ai � � t � � C � � t �
is the closest entry point to C � � t � for node s within Ĉk � s � t � � Π

�
j �

k .

Base Case: k � � 1.
We first prove the following claim.

CLAIM 5.7. If Ĉk � s � t � is at level k � � 1, then C � � t � 	 C0 � t � and d � s � t � ερ � � 1.

Proof. By the definition of Ĉk � s � t � , we know B � s � ερk � 	 Ĉk � s � t � � Π
�
j �

k in Tj and d � s � e0 �� ερk, where e0 �
C � � t � is the closest entry point to C � � t � for node s. Thus d � s � e0 � ερ � � 1 for k � � 1. Since C � � t ��� Π

�
j �

i � is a

descendant of Ĉk � s � t � � Π
�
j �

k in Tj, it must be at a level lower than k; hence d � e0 � t � 2η � � 2 2ρ� 	 1

ρ � 1 4ρ � � 2,
since e0 � t � C � � t � , and C � � t � is at level i � � � 2.

Applying the triangle inequality, we have d � s � t � d � s � e0 � � d � e0 � t � ερ � � 1 � 4ρ � � 2 ερ � . Thus by
Claim 5.4, we have C � � t � 	 C0 � t � , which is t itself; furthermore, e0 	 t and d � s � t ��	 d � s � e0 � ερ � � 1.

The above claim shows that Ĉk � s � t � � Π
�
j �

k in tree Tj contains a shortest path from s to C � � t � 	 C0 � t � �
Π

�
j �

0 , and t is the closest entry point to C0 � t � , which is t itself. Thus hc
e0t 	 hc

tt 	 0, since a node’s distance
to itself is zero. It remains to show that hc

st 	 hi
se0

	 hi
st ; recall hi

st refers to the shortest path from s to t

as included in Ĉk � s � t � . This is true since the routing table of every node v in Ĉk � s � t � � Π
�
j �

k for k �
� 1
contains an entry for C0 � t � 	 t, and a shortest path from s to t is contained in B � s � ερk � 	 Ĉk � s � t � in tree Tj;
hence at equilibrium, the clustered path between s and t as derived from Routes is the shortest path from
s to t, and it is internal to Ĉk � s � t � , i.e., hc

st 	 HF � s � C0 � t ��� 	 hi
st 	 d � s � t � , where k � � 1. The stretch is

exactly 1 since hc
st

d
�
s � t � 	 hi

st
d

�
s � t � 	 1. The forwarding algorithm does not switch tree at all.

Case k 	 � . By Lemma 5.3, C � � t � is at level 0 or 1. When C � � t � is at level k � � 	 0, the proof is the same as
that in the base case.

When C � � t � is at level k � � � 1 	 1, we have d � s � t � � ερ � by Claim 5.5. All messages to be forwarded
or sent from node s to node t will first follow the same shortest path of length h i

se0
	 d � s � e0 � , that is internal

to Ĉ� � s � t � , up to the closest entry point e0 of C � � t � , as specified in Lemma 5.4.
Upon reaching e0, Lemma 5.5 can be applied to show that hc

e0t , the clustered path from e0 to t, is entirely
contained in a level- � k � � cluster Ĉk � � e0 � t � in some tree Tj � , where k � i � � 2 � � 	 � � 1; thus as proved in
the base case, hc

e0t 	 hi
e0t 	 d � e0 � t � . The clustered path from s to t as derived from Routes indeed satisfies

hc
st 	 hi

se0
� hc

e0t , where hi
se0

	 d � s � e0 � and hc
e0t 	 d � e0 � t � .

21

Hence we obtain the bound on the entire path: hc
st 	 d � s � e0 � � d � e0 � t � d � s � t � � 2d � e0 � t � , where

d � s � e0 � d � s � t � � d � e0 � t � by triangle inequality. And the path stretch is: hc
st

d
�
s � t � 	 1 � 2d

�
e0 � t �

d
�
s � t � 1 � 2

�
ρ � 1 �
ερ�

1 � τ, where � � 1 � � logρ 4 � ετ � . The algorithm switches trees at most once.

Case k � � � 1. First we assume that the theorem is true up to k � 1, let us show that it is true for k.
Let Ĉk � s � t � � Π

�
j �

k be the kth level cluster that contains a shortest path from s to C � � t � � Π
�
j �

i � in Tj.
According to Lemma 5.4, all messages to be forwarded or sent from node s to node t will first follow the
same shortest path of length hi

se0
, that is internal to Ĉk � s � t � , up to the closest entry point e0 of C � � t � . By

Lemma 5.3, we know that C � � t � is at level k � � or k � � � 1 when k h � 1. When k 	 h, C � � t � is at level
h � � 	 k � � .

Upon reaching e0, Step 3 of the forwarding algorithm is applied to find C � � � t � , that has the longest valid
matching with t in e0’s routing table. Since C � � t � is at level k � � or k � �
� 1, Lemma 5.5 shows the lowest
common cluster Ĉk � � e0 � t � of e0 and t, such that B � e0 � ερk � � 	 Ĉk � � e0 � t � and B � e0 � ερk � � contains a shortest
path from e0 to C � � � t � , is at level k � i � � 2 � � k � 1. Thus hc

e0t is known from the induction hypothesis
and hc

st 	 hi
se0
� hc

e0t .
Now we proceed to prove the bound on the stretch for level k. Let C � � t � be at level β � � , where β is

k or k � 1; hence d � e0 � t � 2ηβ ��� given that e0 � t � C � � t � . By Lemma 5.2, d � s � t � � � 1 � φ � ερβ � 1, where
i � 	 β � � � 1 for all k � �
� 1.

By Lemma 5.4, hi
se0

is the shortest path from s to e0 that is internal to Ĉk � s � t � and hi
se0

	 d � s � e0 � ;
applying the triangle inequality, we obtain:

hi
se0

	 d � s � e0 � d � s � t � � d � e0 � t � d � s � t � � 2ηβ ��� � (5.4)

By the induction hypothesis, we know

hc
e0t � 1 � τ � d � e0 � t � 2 � 1 � τ � ηβ ��� � (5.5)

Finally, we get the bound on the total path length from s to t:

hc
st 	 hi

se0
� hc

e0t d � s � t � � 2 � 2 � τ � ηβ ��� (5.6)

Now using the fact that d � s � t �
� � 1 � φ � ερβ � 1, and the fact that τ 1, we obtain the path stretch from
s to t:

hc
st

d � s � t � 	 1 � 2 � 2 � τ � ηβ ���
d � s � t � 1 � 6ηβ ���

� 1 � φ � ερβ � 1
 1 � τ � (5.7)

where ��� � logρ 8 � ετ � � 2.
Finally, the algorithm switches trees for at most k � � times to finally route within a level � cluster, after

which it switches tree at most once, thus adding up to a total number of k � �
� 1 times.
Now we look at the bound on k itself. When d � s � t � � 1 � φ � ερn, for all n h, we have k n

by Lemma 5.1. We now verify that all statements in the theorem still apply, for the clustered path hc
st ,

when d � s � t � � � 1 � φ � ερ
�
h � and Ĉk � s � t � is Ch � s � t � . First of all, when Ĉk � s � t � 	 Ch � s � t � , following the

Forwarding algorithm in Section 4.3, we know that C � � t � is at level h � � and hence d � s � t � � � 1 � φ � ερ
�
h � 1 �

by Lemma 5.2. The shortest path from s to e0 � C � � t � , hi
se0

, is internal to Ch � s � t � , the entire network G. Upon
reaching e0, hc

e0t is known by applying the theorem directly since d � e0 � t � 2ηh ��� � 1 � φ � ερh � 1. Thus we
have hc

e0t � 1 � τ � d � e0 � t � � 1 � τ � 2ηh ��� . Hence, the entire path satisfies the equation, hc
st 	 hi

se0
� hc

e0t .

22

Second, with the same calculation as the proof above, it is easy to verify that the entire path hc
st has a stretch

of at most � 1 � τ � given that d � s � t � � � 1 � φ � ερ
�
h � 1 � and hc

e0t � 1 � τ � d � e0 � t � � 1 � τ � 2ηh ��� . The algorithm
switches trees for at most � h � � � 1 � times.

COROLLARY 5.1. For all t such that d � s � t � ερ � , path stretch is 1.

Proof. Node s has a routing table entry for all t such that d � s � t � ερ � , since B � s � d � s � t ��� 	 B � s � ερ � � is fully

contained in some level- � cluster C � � s � � Π
�
j �
� in some tree Tj, and C � � t � is C0 � t � � Π

�
j �

0 ; the base case of the
above proof shows that path stretch is 1.

References

[1] Noga Alon and Joel Spencer. The Probabilistic Method. Wiley Interscience, New York, 1992.
[2] B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-off. SIAM J. Discrete Math.,

5(2):151–162, 1992.
[3] Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In FOCS, pp. 184–193,

1996.
[4] J. Beck. An algorithmic approach to the Lovász local lemma. I. Random Struct. Alg., 2(4):343–365, 1991.
[5] P. B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets with applications to k-

nearest-neighbors and n-body potential fields. JACM, 42(1):67–90, 1995.
[6] L. J. Cowen. Compact routing with minimum stretch. J. Algorithms, 38(1):170–183, 2001.
[7] M. M. Deza and M. Laurent. Geometry of cuts and metrics. Springer-Verlag, Berlin, 1997.
[8] G. N. Frederickson and R. Janardan. Designing networks with compact routing tables. Algorithmica, 3:171–190,

1988.
[9] G. N. Frederickson and R. Janardan. Efficient message routing in planar networks. SICOMP, 18(4):843–857,

1989.
[10] Cyril Gavoille. Routing in distributed networks: Overview and open problems. ACM SIGACT News, 32(1):36–

52, 2001.
[11] C. Gavoille and M. Gengler. Space-efficiency for routing schemes of stretch factor three. JPDC, 61(5):679–687,

2001.
[12] Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and low–distortion

embeddings. In FOCS, pp. 534–543, 2003.
[13] J. Heinonen. Lectures on analysis on metric spaces. Springer-Verlag, New York, 2001.
[14] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object location in a dynamic network. In

SPAA, pp. 41–52, 2002.
[15] David R. Karger and Matthias Ruhl. Finding nearest neighbors in growth-restricted metrics. In STOC, pp. 63–66,

2002.
[16] Leonard Kleinrock and Farouk Kamoun. Hierarchical routing for large networks. Performance evaluation and

optimization. Comput. Networks, 1(3):155–174, 1976/77.
[17] Robert Krauthgamer and James R. Lee. The intrinsic dimensionality of graphs. In STOC, pp. 438–447, 2003.
[18] M. Molloy and B. Reed. Graph colouring and the probabilistic method. Springer-Verlag, Berlin, 2002.
[19] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. JACM, 36(3):510–530, 1989.
[20] D. Peleg. Distributed computing. SIAM, Phila., PA, 2000.
[21] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objects in a distributed

environment. Theory Comput. Syst., 32(3):241–280, 1999.
[22] R. Rajaraman, A. W. Richa, B. Vöcking, and G. Vuppuluri. A data tracking scheme for general networks. In

SPAA, pp. 247–254, 2001.
[23] Kunal Talwar. Bypassing the embedding: Algorithms for low-dimensional metrics. In STOC, pp. 281–290,

2004.

23

	Introduction
	Related Work

	Definitions and Notation
	Hierarchical Decompositions (HDs)
	Hierarchical Decompositions and HSTs

	Padded Probabilistic Ball-Partitions

	Padded Probabilistic Hierarchical Decompositions
	Existence of PPHDs
	Padded Probabilistic Hierarchical Partitions
	Even Fewer Hierarchical Decompositions

	An Algorithm for Finding the Decompositions

	The (1+)-Stretch Routing Schemes
	The Addressing Scheme
	The Routing Table
	The Forwarding Algorithm

	Routing Table Construction and Path Characteristics for (1 +)-Stretch Routing
	Routing Table Update Rules
	Path Characteristics

